2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice, Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. ## First/Second Semester B.E. Degree Examination, June/July 2013 Basic Electrical Engineering Time: 3 hrs. Max. Marks:100 Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. ## PART - A 1 a. Choose the correct answers for the following: (04 Marks) - i) The condition for the validity under Ohm's law is that the - A) temperature should remain constant - B) current should be proportional to voltage - C) resistance must be wire wound type - D) all of the above. - ii) A linear resister is one which obey's - A) Ampere's law B) Lenz's law - C) ohms law - D) Kirchhoff's law - iii) The resistance of a conductor having length ℓ , area of cross section a and resistivity ρ is given as A) $$R = \frac{\rho a}{\ell}$$ B) $$R = \frac{\rho \ell}{a}$$ C) $$R = \rho \ell a$$ D) $$R = \frac{\ell}{a\rho}$$ - iv) Resistance of a wire always increases if - A) temperature is reduced - B) temperature is increased - C) number of free electrons available become less - D) number of free electrons available become more. - b. Find the resistance of the circuit shown (R_{AD}) . (05 Marks) c State and explain Kirchoff's laws. (05 Marks) d. In the parallel arrangement of resistors shown the current flowing in the 8Ω resistor is 2.5amperes. Find i) current in other resistors ii) resistor X iii) the equivalent resistance. Refer fig. Q1(d). (06 Marks) Fig.Q1(d) | 2 | а | Choose the correct answers for the following | , · | (04 Marks) | | | |---|-------------------------------------|---|------------------------------------|---------------------------------------|--|--| | - | u. | i) The law that finds application in electroly | | (04 (1141 K3) | | | | | | A) Faraday's law B) Coulomb's law | | nz's law | | | | | | ii) According to Faraday's law of electro | | | | | | | | conductor whenever it | magnetic madetion an emi is i | naacea m a | | | | | | A) lies in a magnetic field | B) lies perpendicular to the mag | onetic field | | | | | | C) cuts the magnetic flux | b) hes perpendicular to the mag | shelle held | | | | | | D) moves parallel to the direction of mag | onetic field | | | | | | f. | iii) "In all cases of electromagnetic induction, an induced voltage will cause a current to | | | | | | | | flow in a closed circuit in such a direction | | | | | | that current will oppose the change that produces the current" is | | | | | | | | | | statement of | | · · · · · · · · · · · · · · · · · · · | | | | | | A) Lenz's law | B) Faraday's law of magnetic | e induction | | | | | | C) Fleming's law of induction | D) Ampere's law | | | | | | | iv) Which law is synonymous to the occurre | | | | | | | | A) Ampere's law B) Maxwell's law | | nz's law. | | | | | b. | State and explain Faraday's laws of electrom | | (08 Marks) | | | | | c. | Derive the expression for energy stored in an | - X 1 1 X | (08 Marks) | | | | | | | | , | | | | 3 | a. | Choose the correct answers for the following | 5 · | (04 Marks) | | | | | | i) The form factor is the ratio of | | | | | | | | A) average value to rms value | B) rms value to average value | e | | | | | | C) peak value to average value | D) peak value to rms value | | | | | | | ii) In an R – L series circuit the pf is | | | | | | | | A) leading B) lagging | C) zero D) unit | ty · | | | | | | iii) The power factor of an ac circuit is equa | | | | | | | | A) cosine of the angle | B) sine of the phase angle | | | | | | | C) unity for a resistive circuit | D) unity for a reactive circuit | | | | | | | iv) In a pure capacitive circuit, the current w | | | | | | | | A) lag behind the voltage by 90° | B) lead the voltage by 90° | | | | | | h | C) remain in phase with voltage Derive an expression for the impedance of | D) None of these | agistanaa an | | | | | υ. | η ₁ ± Δ.ν." | | | | | | inductance and a capacitance connected in series. c. 125 volts at 60Hz is applied across a capacitance connected in series | | | | (10 Marks) | | | | | c. | inductive resistor. The combination carries a | - | | | | | | | 96.8 w in the resistor. Power loss in the cap | | | | | | | | and capacitance. | action is negligible. Calculate in | (06 Marks) | | | | | | and capacitance. | | e e e | | | | 4 | a. | Choose the correct answers for the following | ; · | (04 Marks) | | | | | | i) In a 3 phase balanced star – connected lo | ad, neutral current is equal to | | | | | | A) Zero B) I_P C) I_L D) Unpred | | | | | | | | hase voltage of a delta connect | ed circuit is | | | | | | | | | | | | | | | | $A) V_1 = V_2 \qquad B)V_2 = \sqrt{3} V_2$ | $C) V_1 = V_0 \qquad D) V_2$ | $=$ 2 $_{V_{-}}$ | | | | | | A) $V_L = V_P$ B) $V_L = \sqrt{3} V_P$ | $\frac{1}{\sqrt{2}}$ D) $\sqrt{1}$ | $\frac{-}{\pi}$ \mathbf{v}_{P} | | | | | is the phase | | | | | | | | the phase | | | | | | | | | angle betweenA) line voltage and line current | B) phase voltage and phase co | urrent | | | | | | C) line voltage and phase current | D) phase voltage and line cur | | | | (08 Marks) | | | iv) Three equal impedances are first connections. A) phase currents will be one - third C) power consumed will be one - third | ected in star across the same supply B) line currents will be one - third | nced | |-----|-------|--|--|---------------| | | ć. | Derive the relationship between a line current phase voltage related to a star connected load. Mention different types of wiring used in don Explain construction and working principle of | d. (07 Ma
mestic dwellings. (03 Ma | rks)
irks) | | | | | (06 Ma | | | | | PART - | <u>- B</u> | | | 5 | a. | Choose the correct answers for the following | | rks) | | | | i) The emf generated in a dc generator depe | | | | | | A) brush contact drop | B) commutation | | | | | C) number of parallel paths ii) The de generator beying residual magnet | D) terminal voltage | :11 | | | | ii) The dc generator having residual magnet be | usin gives zero induced emi, the speed | WIII | | | | A) zero B) very small | C) rated one D) any | | | | | iii) The field coils of a dc machine are made | | | | | | A) carbon B) copper | C) mica D) steel | | | | | iv) The rotating part of a dc machine is calle | d the | | | | | A) rotor B) field | , | | | | b. | The emf generated in the armature of a shunt | | | | | | full load current of 400 A to the external c | E.F | | | | | armature resistance is 0.06Ω . What is the term | | | | | c. | A 220 volts series motor is taking a current o | | | | | | resistance of series field is 0.25ohm. Calcula emf iii) Power wasted in armature iv) | · 11 \1 · 1 | | | | | em m) rower wasted in armature iv) | 1 Ower wasted in series field. (08 Ma | rksj | | 6 | a. | Choose the correct answers for the following | : (04 Ma | rks) | | | | i) Transformer is used | And the state of t | | | | | A) to step up the voltage | B) to step down the voltage | | | | | C) on dc | D) to step up or step down the voltage | e | | | | ii) A transformer does not transfrom | | | | | 4 | A) power B) voltage | C) current D) impedance | | | | (| iii) In a transformer, electrical power is trans | | | | . 4 | N., 2 | A) through airC) through insulating medium | B) by magnetic flux D) none of these | TE . | | | | iv) The two windings of a transformer are | D) none of these | | | * | | A) conductively linked | B) inductively linked | | | | | C) not linked at all | D) electrically linked | | | | b. | Explain principle of operation of a single | · · · · · · · · · · · · · · · · · · · | MF | | | | equation. | (08 Ma | | | | c. | A single phase, 20 KVA transformer has 100 | 00 primary turns and 2500 secondary tu | rns. | | | | The net cross sectional area of the core is | | | | | | connected to 500V, 50Hz supply, calculate | | | in the core ii) the voltage induced in the secondary winding and iii) the primary and secondary full load currents. (04 Marks) | | | A) Stain steel | B) CRC _o GS | | |-------------|------------------|--|--|---------------------------------------| | | | C) Cast iron or welded steel plates | D) Laminated silicon steel | ₩ L2. | | | | ii) The stator core of a synchronous machine i | is laminated so as to reduce, | | | ey
It iz | | A) Eddy current loss | | | | | jë
1 | B) Hysteresis | | | | | er ²¹ | C) Both eddy current and hysteresis loss | | | | | Comi. | D) The size and weight of the machine | | (4) t | | | ŝ | iii) The stator slot insulations in synchronous r | nade of, | * | | | | for the state of | | of these | | | | | | | | | | iv) The machine that supplies dc to the rotor is A) Rectifier B) Exciter | C) Convertor D) Inver | tor | | | b. | Derive EMF equation of an alternator. | | (08 Marks) | | | c. | Explain construction and working principle of | synchronous generator. | (08 Marks) | | | | | | | | 8 | a. | Choose the correct answers for the following: | | (04 Marks) | | | | i) If a single phase induction motor runs at a | a speed lower than the rated on | e, the most | | | | likely defect is, | | | | | | A) improper size fuses | | | | | | B) Worn-out bearings or low voltage or ov | er load | | | | | C) Open-circuit in the winding | | | | | | ii) If the starting winding of a single phase inc | duction motor is left in the circu | uit, | | | | A) the motor will run faster | | | | | | B) the motor will run slower | | | | | | C) there will be undue sparking | | | | | | D) the auxillary winding will get over-hea | ated due to continuous flow of | current and | | | | may get damaged. | | | | | | iii) Which of the following types of motors are | | | | | | | B) Commutator type motors | | | | | in the state of th | D) Schrage motors | | | | | iv) Which of the following types of motors are | and the second s | | | | | or the control of th | B) Split phase motors | | | | | | Repulsion start induction motors | | | | b. | Explain construction and working principle of | | (08 Marks) | | | c. | 3 1 | otor? Under what circumstance | • | | | | i) unity and ii) zero. | | (08 Marks) | | | | | | | | | | | | e e e e e e e e e e e e e e e e e e e | a. Choose correct answers for the following: **** ***